Total 2-domination number in digraphs and its dual parameter
نویسندگان
چکیده
A subset $S$ of vertices a digraph $D$ is double dominating set (total $2$-dominating set) if every vertex not in adjacent from at least two $S$, and one (the subdigraph induced by has no isolated vertices). The domination number $2$-domination number) the minimum cardinality $D$. In this work, we investigate these concepts which can be considered as extensions graphs to digraphs, along with $2$-limited packing total have close relationships above-mentioned concepts.
منابع مشابه
Efficient total domination in digraphs
We generalize the concept of efficient total domination from graphs to digraphs. An efficiently total dominating set X of a digraph D is a vertex subset such that every vertex of D has exactly one predecessor in X . We study graphs that permit an orientation having such a set and give complexity results and characterizations concerning this question. Furthermore, we study the computational comp...
متن کاملTotal Roman domination subdivision number in graphs
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
متن کاملInverse Domination and Inverse Total Domination in Digraphs
I. Introduction In this paper, D=(V, A) is a finite, directed graph with neither loops nor multiple arcs (but pairs of opposite arcs are allowed) and G=(V, E) is a finite, undirected graph with neither loops nor multiple edges. For basic terminology, we refer to Chartrand and Lesniak [2]. A set S of vertices in a graph G=(V, E) is a dominating set if every vertex in V – S is adjacent to some ve...
متن کاملEdge 2-rainbow domination number and annihilation number in trees
A edge 2-rainbow dominating function (E2RDF) of a graph G is a function f from the edge set E(G) to the set of all subsets of the set {1,2} such that for any edge.......................
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2023
ISSN: ['1234-3099', '2083-5892']
DOI: https://doi.org/10.7151/dmgt.2387